Continuously translating vector-valued measures
نویسندگان
چکیده
منابع مشابه
Vector-valued coherent risk measures
We define (d, n)−coherent risk measures as set-valued maps from Ld into IR satisfying some axioms. We show that this definition is a convenient extension of the real-valued risk measures introduced by Artzner, Delbaen, Eber and Heath (1998). We then discuss the aggregation issue, i.e. the passage from IR−valued random portfolio to IR−valued measure of risk. Necessary and sufficient conditions o...
متن کاملVector Valued Measures of Bounded Mean Oscillation
The duality between Hl and BMO, the space of functions of bounded mean oscillation (see [JN]), was first proved by C. Fefferman (see [F], [FS]) and then other proofs of it were obtained . Using the atomic decomposition approach ([C], [L]) the author studied the problem of characterizing the dual space of Hl of vector-valued functions . In [B2] the author showed, for the case SZ = {Iz1 = 1}, tha...
متن کاملValue Difference Metrics for Continuously Valued Attributes
Nearest neighbor and instance-based learning techniques typically handle continuous and linear input values well, but often do not handle symbolic input attributes appropriately. The Value Difference Metric (VDM) was designed to find reasonable distance values between symbolic attribute values, but it largely ignores continuous attributes, using discretization to map continuous values into symb...
متن کاملOperator Valued Series and Vector Valued Multiplier Spaces
Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous linear operators from $X$ into $Y$. If ${T_{j}}$ is a sequence in $L(X,Y)$, the (bounded) multiplier space for the series $sum T_{j}$ is defined to be [ M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}% T_{j}x_{j}text{ }converges} ] and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...
متن کاملAMENABILITY OF VECTOR VALUED GROUP ALGEBRAS
The purpose of this article is to develop the notions of amenabilityfor vector valued group algebras. We prove that L1(G, A) is approximatelyweakly amenable where A is a unital separable Banach algebra. We givenecessary and sufficient conditions for the existence of a left invariant meanon L∞(G, A∗), LUC(G, A∗), WAP(G, A∗) and C0(G, A∗).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1980
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1980-0552271-0